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MOTIVATION

Clouds have a strong impact on Earth’s radiation
budget: -45 W m-2 shortwave; +30 W m-2
longwave.

Slight change in cloud amount or properties could
augment or offset greenhouse gas induced
warming — cloud feedbacks.

Accurate representation of cloud radiative effects
in climate models is essential.

Clouds exhibit structure on small scales not
resolved by satellite imagery.

OPTICALLY THIN CLOUDS HAVE STRONG RADIATIVE EFFECTS
Dependence on shortwave optical depth and cloud-top temperature
24-Hour average cloud radiative effect, north central Oklahoma, at equinox
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HOW THIN IS AN “OPTICALLY THIN” CLOUD?

If cloud optical depthis 3. . .

Number of scattering eventsis 3. . .
Number of drops in vertical columnis 1.5 . . .
Liquid water path (for 15 pm diameter drops) is 10 cm

or10gm2,
If cloud optical depth is 0.3 . . .

Number of scattering events is 0.3 . ..
Number of drops in vertical column is 0.15 . . .
Liquid water path (for 15 pm diameter drops) is 104 cm

origm2

Thin indeed. But these clouds are radiatively important!

MEASUREMENTS

OBSERVATION GEOMETRY

COMMERCIALLY AVAILABLE
HIGH-RESOLUTION CAMERA
1200 mm equivalent 35 mm focal length; f/5.6
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$180,000 $350

Nominal resolution 6 prad (6 mm at 1 km)

STRENGTHS AND ADVANTAGES

High resolution: 6 urad nominal (6 mm at1km); 20 urad actual.

Many independent measurements: 3456 x 4608 = 16 M pixel.
High dynamic range: 16 bit.

Multispectral: Three wavelengths nominal, Red, Green, Blue.
Black background of outer space: Minimal surface effects.
Readily available data acquisition hardware and software.
Available, easy-to-use image processing software.

Simplicity: Get going right away.

Low cost.

Lots of data!

WEAKNESSES AND LIMITATIONS

Two-dimensional only.

Daytime only.

Limited wavelength range.

Small fraction of sky; extremely local.
Aerosol masquerades as cloud.

Lots of data!

Narrow field-of-view camera at ARM SGP site
(north central Oklahoma), 07-31-2015.

Camera FOV, 22 x 29 mrad
=2x3 sun diameters
o Sun, angular diameter
© 035" = 9.3 mrad
wesi Both drawn 10 times
agess  actual angular dimension

Moonshot
for comparison

Wide FOV camera is 5.5 x narrow FOV camera.

RESOLVING POWER TEST AT 1 km
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Actual resolution 20 prad (20 mm at 1 km)

Time is UTC; local sun time = UTC - 6.5 h.

SOME INITIAL RESULTS

ZOOMING IN, IN SPACE AND TIME: THREE MINUTES IN OKLAHOMA

Wide field of view 240 x 320 m
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07-31-2015; UTC time; local sun time = UTC - 6.5 h; 16:33 = 10:03 sun time.
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SPATIAL VARIATION

AUTOCORRELATION ANALYSIS

. Red/(Red + Blue), RRB

RGB Image auocorelationof RRB_ Autocorrelation distance

corresponds to ~16 m.

Such short autocorrelation
distances are commonly
found in these analyses.

36 mm) © FoesTpbel Tomm) Lag s (1 pixel~ 1o mm)
con. 5222015

~1000 pixels in this example

THEORY

RADIATION TRANSFER CALCULATIONS
Calculations with DISORT
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Zenith radiance initially incre
COD, before decreasing with optically thick clouds.
SCALING OF INTENSITIES FROM IMAGES

Identify cloud-free and bright cloud regions of image. Scaled normalized
radiance R is evaluated from measured count rate C as

C ~Crin
-C,

Ry =R,

'min +

(Rinax = Rinin)

Crnax min

Cinin and Cingy from images; Rmin and Ringx from radiation transfer
calculations.

DETERMINING CLOUD OPTICAL DEPTHS
FROM IMAGES

Scaled radiances are inverted at a given solar zenith angle to yield cloud
optical depth COD as a function of normalized radiance at each of the two
wavelengths:
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Inversion is valid for optically thin clouds, COD <3.

CLOUD FRACTION

ALTERNATIVE MEASURES OF CLOUDINESS AND CLOUD FRACTION

Blue, false color

Normalized zenith radiance = zenith radiance/incident irradiance, sr-!

Red, false color
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There is no unique or unambiguous measure of cloud fraction.
Red/(Red + Blue) color ratio is very sensitive to optically thin clouds.

CLOUD OPTICAL DEPTH
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DETERMINATION OF CLOUD OPTICAL DEPTH FROM RADIANCES
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Cloud optical depth is determined with precision of about 0.1 OD over range 0 to 3.
Close agreement for COD from Red and Blue radiances supports the method.

TIME DEPENDENCE

MULTIPLE MEASURES OF CLOUD EFFECTS ON RADIANCE

AND VERTICAL CLOUD STRUCTURE
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Different quantities are broadly coherent but exhibit different time responses mainly because of differing FOV.

CONCLUSIONS

» Photography of clouds from the surface provides a
novel way of looking at clouds and their radiative effects
at much higher resolution than other cloud imaging
techniques.

» Readily available commercial cameras provide a
resolution of about 20 yrad (corresponding to 20 mm
for cloud base at 1 km), 3 orders of magnitude higher
than typical satellite products.

+ Cloud properties are highly variable in space (a few
meters or less) and time (a few seconds or less).

« Autocorrelation distances are commonly of order a
few meters.

« Cloud area fraction, a widely used product of surface-
based and satellite observations, is inherently
dependent on choice of threshold.

« Cloud optical depth can be accurately retrieved at
native resolution of the camera for optically thin
clouds, optical depth < 3.
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